

Energy Is Key to All Problems

- End use energy vital to economic growth, but;
 - Growing fossil use exacerbating environment, poverty, terrorism and war and democracy
- Mitigate in three ways:
 - Efficiency of energy use
 - . Increased renewable use (may harm economy)
 - Recycle energy

Mitigating Problems with DG

- Recycle energy now wasted with DG
- New CHP needed to enable recycling of normally wasted heat

Fundamental Flaw in US Energy

- Boilers make heat that was just thrown away, wasting the potential in fuel to do work
 - Fuel is like whole milk has cream & skim milk – work or electricity and heat
 - Every dairy produces both products
 - Federal facility thermal plants waste the cream make no electricity
 - All central electric plants waste the skim milk – waste the heat

Defining Recycled Energy

- Useful energy derived from
 - (1) exhaust heat from any industrial process;
 - (2) industrial tail gas that would otherwise be flared, incinerated or vented; and
 - (3) pressure drop in any gas, excluding any pressure drop from a condenser that subsequently vents the resulting heat.

Industrial Recycling

- Most industries have learned to 'rag pick' trash to recycle materials
 - Steel, aluminum, glass, paper and plastic industries all increasingly recycle product
- As a rule, energy is used once, then vented; recycling is the exception.
- Industrial waste heat, fuel, and pressure drop could supply 45 to 92 Gigawatts of fuel-free capacity – 13% of US peak

Waste Heat Potential

- Industry vents heat from coke ovens; metal, chemical, and glass production; gas compressor drives; and refineries
- This heat could supply 13,000 MW, 24/7
 - · No added fossil fuel
 - No added pollution
 - . No added greenhouse gas

Industrial Tail Gas

- US industry flares waste gas equivalent to 2.0 TCF of natural gas/year
 - . The resulting heat is generally vented.
 - Picking these 'rags' could supply 19 gigawatts of new electric- only capacity, or
 - Support CHP with 15 GW of electric capacity and 50 GW of thermal capacity.

Steam Pressure Drop

- Most complexes, including Federal facilities distribute medium pressure steam, then waste the pressure drop energy.
 - Backpressure turbines can convert these steam pressure drop 'rags' into 12 to 20 GW of fuel free electric capacity.
 - Elevate boiler pressure to increase the pressure difference and supply up to 50 GW electric capacity

Natural Gas Pressure Drop

- Pipeline gas is compressed for transmission, then deflated at city gates
 - Rag picking gas pressure drop would supply another 8 10 gigawatts of fuel free electric capacity.

Industrial Recycling Summary

- In total, industrial process waste energy could supply 45 to 92 gigawatts of electric capacity
- Picking these 'rags' would displace 2.4 quads per year – 2.5% of total US fuel consumption.
 - Recycling potential is concentrated in industrial states with significant coal based generation

Industrial Recycled Energy Case Study: Primary Energy

- NiSource invested \$300 million in six projects that recycle steel plant waste energy to supply 440 megawatts of electric capacity and 460 megawatts of steam capacity.
- The steel mills save over \$100 million per year and avoid significant air pollution
 - The CO₂ reduction is equivalent to the uptake of one million acres of new trees.
- Such rag picking is profitable; the projects were recently sold for \$335 million to Private Power

Larger Potential – CHP

- 70% of US electricity generated with an aging fleet of fossil fueled central plants
- These plants deliver 31% of fuel's energy as electricity, waste the rest
- Central generation vented 17.6 quads in 2001, enough to replace 22 quads of boiler fuel
- Commercial and industrial sectors burned 25.6 quads in their boilers.

Combined Heat and Power (CHP) Pollution 10% Waste Heat 10% Steam Chilled Water (On or near thermal user sites)

Why Don't Central Plants Recycle Waste Heat?

- Ton van der Does, father of Netherlands CHP, developed the "rule of sevens
 - It takes 7 times more energy to move a MWh of electricity a given distance than to move a MWh of fuel the same distance
 - It takes 7 times more energy to move a MWh of thermal energy than to move a MWh of electric energy, thus
 - It takes 49 times the energy to move a MWH of thermal versus a MWh of fuel.

Therefore:

It is prohibitively expensive to move waste heat from remote central plants to thermal users

Why Continue Central Generation?

- The world's approach to electric regulation was originally designed to speed electrification by giving early electric entrepreneurs monopoly protection.
- The rules penalize utility efficiency, block competition and discourage recycling
 - The rules remain, long after universal electrification, for two reasons: assumed economy of scale and natural inertia.

Economies of Scale?

- Regulations assume it is cheaper to produce power in a few large plants than in many small plants. But the assumption is flawed, even before counting DG ability to recycle heat.
- Consider impact of scale on efficiency and capital cost per delivered kW

Efficiency Comparisons

- 500 MW CCGT is 60% efficient but 9.7% of power lost in T&D, delivered efficiency 54%
- All backpressure turbines extract power with zero marginal fuel, infinite efficiency, sized down to 40 kW or .04 MW
- One MW fuel cell is 57% efficient but has no T&D losses and can recycle remaining heat
- Other CHP 30% 45% efficient but recycles heat to achieve 85% 95% total efficiency.

Capital Cost Comparisons

- 500 MW CCGT costs \$800/kW to install, but:
 - . Needs new T&D, average cost of \$1200/kW
 - . Suffers 20% line losses during peak hours
 - Capital cost per peak, delivered kW is \$2500
- One MW fuel cell costs same -- \$2500
- Backpressure turbine costs \$300 \$1000/kW
- New gas turbine, gas engine or boiler/steam turbine plant costs \$800 to \$1200/kW.

Conclusion:

DG efficiency and capital cost better than CG on delivered basis

Last Minute Update

- Usual response claims T&D needs and costs are overstated. People do not want to believe that central generation is wrong.
- At 4:11 PM, EDT on Friday, August 15, the US transmission system made a powerful statement about its adequacy.

DG Problem 2 - Natural Inertia

- Attitudes, habits of mind, regulations and the power of incumbent firms are all slow to change
 - In competitive markets, insurgents niche sell disruptive technology; winners improve over time and replace incumbents
 - Competitive barriers have sheltered power industry from disruptive technology, which has retarded DG value proposition improvements
- DG now growing, rapidly improving value

Actions to Induce Recycling

- Reward/penalize utilities for efficiency .
- Recognize locational value of DG
 - . Avoids both T&D losses and new T&D investments
- Eliminate "les bans" the state laws prohibiting private wires or third party sales of electricity.
- Simplify and standardize interconnection rules
- Allow emissions/MWh of useful energy output eliminate new source rules.
- Give recycled & renewable energy a preferred position since both are fuel & pollution free.
- Deploy real time electric pricing, giving the market needed price signals.

Current DG Deployment

- DG supplies 6.5% of US power, but individual states use ranges from 0% to 33%
- Nations generate 2% to 40% of power with DG
- All states have access to same technology and fuel prices, suggesting differences due to barriers

Implications for FEMP

- Recycling energy could, over time, displace 25% of US fuel.
- Recycling mitigates key world problems:
 - Cost of energy
 - Competitive strength of US industry
 - . Vulnerability to weather and terrorists
 - . Balance of payments
 - Air pollution
 - · Climate change

Implications continued

- Gas prices & electric deregulation are causing energy price sticker shock
- DG/CHP industry is mobilizing, making policy makers aware of options
- Transmission congestion is growing worse, forcing consideration of DG (Written before 8/15/03 blackout)
- Change will be abrupt, not continuous, triggered by some "tipping point" event
- When DG, not whether, is the question.

FEMP Takeaway

Recycle energy in your facility, then deploy CHP to serve base thermal load, recycle more energy, mitigate many problems

